

Test Equipment and Electricity Basics John R. Leeman GEARS 2022

A Few Safety Notes

- Never work on high voltage DC or any AC systems unless qualified
- This class doesn't qualify you
- Don't work on live systems if possible
- Don't work alone
- Unsure? Stop
- Did I mention this course doesn't make you an electrician?

"Anything can be a fuse" - A Mechanical Engineer

Electric circuits are closed loops that electrons flow through. Electrical energy is stored electrical potential difference.

We generally think in conventional current flow, not electron flow

WE WERE GOING TO USE THE TIME MACHINE TO PREVENT THE ROBOT APOCALYPSE, BUT THE GUY WHO BUILT IT WAS AN ELECTRICAL ENGINEER.

In electronics we generally only have to consider a few fundamental quantities

• Voltage

• Current

- Resistance
- Capacitance
- Inductance
- Reactance

= amperes

We can use the water analogy for a bit longer

More

Less

Images: Sparkfun

Ohm's Law relates all of these quantities

Ohm's Law relates all of these quantities

Image: sengpielaudio.com

Let's apply Ohm's law to a few systems

9877 4.31442 至 Men 010002

We draw circuits in schematic diagrams with symbols to represent parts and connections

The symbols are "standard" for many components

Image: Sparkfun

Junctions mark there connections are made

We also use net name labels to reduce schematic clutter

Image: Sparkfun

Golden rule - read the datasheet, completely, always, and ignore the "banner specifications" on page 1

Sample & Buy

TEXAS INSTRUMENTS

LMx24-N, LM2902-N Low-Power, Quad-Operational Amplifiers

Technical

Documents

Features 1

Internally Frequency Compensated for Unity Gain

Product

Folder

- Large DC Voltage Gain 100 dB
- Wide Bandwidth (Unity Gain) 1 MHz (Temperature Compensated)
- Wide Power Supply Range:
 - Single Supply 3 V to 32 V
 - or Dual Supplies ±1.5 V to ±16 V
- Very Low Supply Current Drain (700 µA) -Essentially Independent of Supply Voltage
- Low Input Biasing Current 45 nA (Temperature Compensated)
- Low Input Offset Voltage 2 mV and Offset Current: 5 nA
- Input Common-Mode Voltage Range Includes Ground
- Differential Input Voltage Range Equal to the • Power Supply Voltage
- Large Output Voltage Swing 0 V to V⁺ 1.5 V
- Advantages:
 - Eliminates Need for Dual Supplies
 - Four Internally Compensated Op Amps in a Single Package
 - Allows Direct Sensing Near GND and VOUT

3 Description

Nools &

Software

The LM124-N series consists of four independent, internally frequency high-gain, compensated operational amplifiers designed to operate from a single power supply over a wide range of voltages. Operation from split-power supplies is also possible and the low-power supply current drain is independent of the magnitude of the power supply voltage.

Support & Community

Application areas include transducer amplifiers, DC gain blocks and all the conventional op amp circuits which now can be more easily implemented in single power supply systems. For example, the LM124-N series can directly operate off of the standard 5-V power supply voltage which is used in digital systems and easily provides the required interface electronics without requiring the additional ±15 V power supplies.

Device	Information ⁽¹⁾	
--------	----------------------------	--

Detrice internation			
PART NUMBER	PACKAGE	BODY SIZE (NOM)	
LM124-N		10 56	
LM224-N	- CDIP (14)	19.56 mm × 6.67 mm	
LM324-N	CDIP (14)	19.56 mm × 6.67 mm	
	PDIP (14)	19.177 mm × 6.35 mm	
	SOIC (14)	8.65 mm × 3.91 mm	
	TSSOP (14)	5.00 mm × 4.40 mm	
	PDIP (14)	19.177 mm × 6.35 mm	

Resistors

Images: Sparkfun

There are common values, we recommend 1% or better

c	Colour	Band 1 First digit	Band 2 Second digit	Band 3 Multiplier	Band 4 Tolerance
	Black	0	0	x 1 (x 1)	
	Brown	1	1	x 10 (x 10)	1%
	Red	2	2	x 100 (x 100)	2%
	Orange	3	3	x 1 000 (x 1k)	not used
	Yellow	4	4	x 10 000 (x 10k)	not used
	Green	5	5	x 100 000 (x 100k)	not used
	Blue	6	6	x 1 000 000 (x 1M)	not used
	Violet	7	7		not used
	Grey	8	8	2	not used
	White	9	9	-	not used
	Gold	-	2	2	5%
	Silver	-	-		10%

		1% Resistor V	alues ($k\Omega$)	
5% Resistor Values (kΩ)	100-174	178-309	316-549	562-976
10	100	178	316	562
11	102	182	324	576
12	105	187	332	590
13	107	191	340	604
15	110	196	348	619
16	113	200	357	634
18	115	205	365	649
20	118	210	374	665
22	121	215	383	681
24	124	221	392	698
27	127	226	402	715
30	130	232	412	732
33	133	237	422	750
36	137	243	432	768
39	140	249	442	787
43	143	255	453	806
47	147	261	464	825
51	150	267	475	845
56	154	274	487	866
62	158	280	499	887
68	162	287	511	909
75	165	294	523	931
82	169	301	536	953
91	174	309	549	976

Capacitors

(1)

Images: Sparkfun

Inductors

Image: embeddedmicro.com

Diodes

Types of Diode

Image: Instructables

Switches

Image: Learning Engineering

Transistors can be operated in different modes

Transistors as a switch

Image: Sparkfun

FETs

LEEMANGEOPHYSICAL

CONSULTING & INSTRUMENTATION

10

Image: Electronics Tutorials

Voltage Regulation

Image: Components 101

Motors

Wire

Image: Simkan Cable

Connectors

Image: Wikipedia, topflitecomponents, EBay, Amphenol, renhotecrf

Start/Stop Circuit

Image: drstienecker.com

Failsafe Circuit

Image: instrumentationtools.com

Failsafe Circuit

Image: instrumentationtools.com

Voltage dividers are a building block you'll find over and over

Common Equipment

Images: Test Equipment Depot, tequipment.net, Tektronix

The DMM is your best friend and a good one can be had for about \$50

Ċ

Extech EX330 Autoranging Mini Multimeter with NCV and Type K Temperature, orange and

green

Brand: Extech

***** ~ 824 ratings

-8% ^{\$}54⁹⁹

List Price: \$59.99 🔴

√prime

& FREE Returns ~

or 3 monthly payments ~ of \$18.33

Get 5% back (\$2.74 in rewards) on the amount charged to your Amazon Prime Rewards Visa Signature Card.

May be available at a lower price from other sellers, potentially without free Prime shipping.

Size: Autorange Multimeter with Thermometer

Autorange Multimeter with Thermometer	Electrical TRMS Multimeter
\$54.99	\$109.99
√ prime	√ prime
Manual Range Multimeter	Standard Autorange
	Multimeter
\$34.22	1 option from \$182.80
✓prime	

You can go as crazy as you want depending upon the features you need

Fluke 117 Digital Multimeter, Non-Contact AC Voltage Detection, Measures Resistance/Continuity/Frequency/Capac itance/Min Max Average, Automatic AC/DC Voltage Selection, Low Impedance Mode Visit the Fluke Store ****** • 3.299 ratings

-10% \$23999

List Price: \$265:99

rħ

& FREE Returns

You can get up to 4% off on Amazon Business — and this past year, you would have saved 51 TIG 55 . Sign up, it's free. More details \sim . Get 5% back (\$11.99 in rewards) on the amount charged to your Amazon Prime Rewards Visa Signature Card. May be available at a lower price from other sellers, potentially without free Prime shipping.

Enhance your purchase

Payment plans

From \$40.00/mo (6 mo) with 0% APR

Fluke 289 True-RMS Stand Alone Logging Multimeter

Amazon's Choice for "fluke 289"

-12% \$71557

List Price: \$809.99 (1)

√prime

Û

& FREE Returns ~

or 12 monthly payments ~ of \$59.64

You can get up to 12% off on Amazon Business — and this past year, you would have saved \$ it's free. More details \curlyvee

May be available at a lower price from other sellers, potentially without free Prime shipping.

Style:

Fluke 289 True-RMS Logging Multimeter V

Brand	Fluke
Power Source	Corded Electric
Style	Fluke 289 True-RMS Logging Multimeter
ltem Weight	1.92 Pounds
Item Dimensions LxWxH	0.24 x 0.4 x 0.87 inches

Roll over image to zoom in

Fluke 87V Digital Multimeter with a NIST-Traceable Calibration

\$55200

rh

√prime

& FREE Returns ~

Pay \$552.00 \$412.43 after using available Amazon Rewards Visa Card Points.

May be available at a lower price from other sellers, potentially without free Prime shipping.

Enhance your purchase

Payment plans

From \$30.67/mo (18 mo) with 0% APR

Brand	Fluke
Style	Fluke 87-V Multimeter w/ NIST Certificiate
Measurement Type	Multimeter

Images: Amazon

Roll over image to zoom in
Never use these cheap meters or connect to AC unless you know what you are doing - and even then avoid cheap meters!

YT Channel: DiodesGoneWild

Meter functions are marked with symbols on a dial or in a menu

Symbol	Meaning	Sym
v	V DC	⊣⊢
•		-▶
v	V AC	Hz
mV	millivolts (.001V or 1/1,000V)	$REL\Delta$
Α	Amps	Range
mA	milliamps (.001A or 1/1000A)	Hold
μΑ	microA (.000001A or 1/1,000,000A)	MIN I
Ω	Resistance (Ohms)	4
kΩ,ΜΩ	kilo-Ohms, Megohms	1
))))	Continuity beeper	Δ

ymbol	Meaning					
F	Capacitance	(uF: Microfarads)				
		(nF: Nanofarads)				
\vdash	Diode test					
2	Hertz (cycles/	sec)				
ELΔ	Relative or offset reading					
ange	Manual override of autorange					
old 🚹 blo	Touch Hold-last stable reading					
IN MAX	Highest, lowest recorded readings					
1	Dangerous vo	Itage levels				
λ	Caution: see	manual				

FEMANGEC CONSULTING & INSTRUMENTATION

Voltage measurement is the most common task

- Select correct voltage function (AC/DC)
- Plug black probe into COM jack and red into V jack
- Select highest range if the meter is not autoranging
- Touch probes across DUT in parallel to the voltage to be measured

Resistance Measurement

- Select the resistance function
- Plug black probe into COM jack and red into Ohms jack
- Touch probes across resistance to be measured, watch the units!
- OL is open circuit
- Continuity beeper function is great!

Image: electrical-engineering-portal.com

Current measurements require a different hookup structure

- Select the current function (AC or DC), use mA for small currents
- Ensure the circuit is powered off and break the circuit
- Insert the probes in series at the circuit break
- Plug black probe into COM jack and red into correct current jack
- Power the circuit

Pay attention to the mA/A connector - you may even need a current clamp device for higher current measurements

What is RMS and why you do or don't need it

Power consumed in R1 is same for both AC and DC source if the Vac_{RMS} = Vdc.

Images: Fluke

When would you need an RMS meter?

Multi	meter Type	Average	True RMS
\sim	Response to sine wave	Correct	Correct
സ്ഥ	Response to square wave	10% High	Correct
_^	Response to single phase diode rectifier	40% low	Correct
$\mathcal{M}_{\mathcal{W}}$	Response to 3 phase diode rectifier	5-30% low	Correct

Oscilloscopes are the second most used tool and are available at many price points and form factors

Oscopes graph voltage over time with generally large bandwidths

The main screen generally tells you most of the things you need

The vertical system controls the volts/div and offset of each channel

The horizontal system controls time scale of trigger offset

Choosing the right time base lets you see what you're interested in

Just free-running in time can produce nauseating displays

The trigger system is designed to "freeze" a waveform

FFMAN

CONSULTING & INSTRUMENTATION

- Trigger level
- Type (edge, pulse, slope)
- 50%
- Force
- Trigger Hold Off

Probes should be "invisible", but at high frequencies this means some RF magic

Full size scopes have test points for probe compensation

Scopes can be easily smoked (along with you) when probing non-isolated circuits

There are a number of specs to consider when buying a scope

- Bandwidth
- Analog vs. Digital
- Channel Count
- Sampling Rate
- Rise Time
- Maximum Input Voltage
- Resolution
- Vertical Sensitivity
- Time Base
- Input Impedance

Function generators can create known signals to feed into systems and can be found from a few hundred dollars

END

makeamemeiorg

Stepper motors work by moving a magnetic field electrically

4-lead motors are used in smaller motors to save space and in larger motors as the cost of wiring is lower. They cannot, therefore, be wired in serial, parallel or with one half of the winding according to the speed requirements as in the 6-lead and 8lead versions.

Step o	perat	ion							
F	0		1		2		3		
н	0	1	2	3	4	5	6	7	
AH A\L	1	0	0	0	0	0	1	1	
Вн В/	1	1	1	0	0	0	0	0	
A\H AL	0	0	1	1	1	0	0	0	
B\H BL	0	0	0	0	1	1	1	0	
dez	12	4	6	2	3	1	9	8	

Bridge circuits are a common configuration

Images: National Instruments

This can also be a factor when connecting two DAQ systems

Rtotal = 990 ohms!

Image: TransTek, National Instruments, MCCDAQ

Input impedance tells us how much load a system puts on the DUT

Image: Sound On Sound

Mismatched impedance can cause puzzling behavior

CONSULTING & INSTRUMENTATION

Im

Images: National Instruments

Impedance is really "AC resistance"

