

Transducers John R. Leeman 8/3/21

Image: Applications Engineering

Transducers convert one form of energy into another

We classify transducers into three distinct types based on "direction"

Sensors

Actuators

Bidirectional

Images: Automation Direct, Servo City, Antenna Associates

Transducers can be active or passive in nature

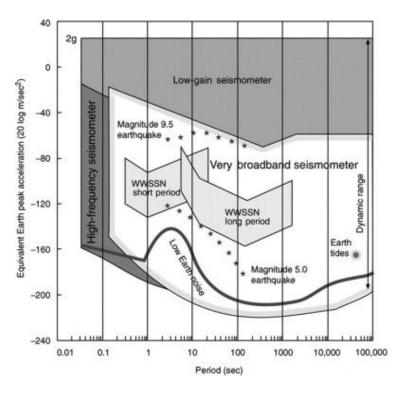
Images: Transtek, Digikey, Amazon, Futek

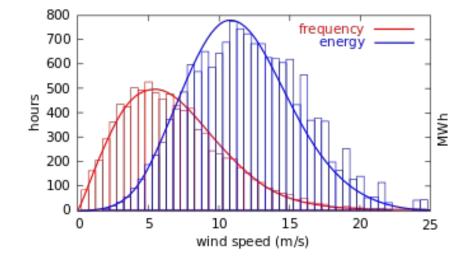
A few of the MANY factors to consider when looking for transducers

- Range
- Span
- Linearity
- Sensitivity
- Response Time
- Stability
- Accuracy
- Noise
- Durability/Environmental
- Cost
- Signal Conditioning
- Technology
- Hysteresis
- Output

Range is the values over which the transducer is rated to perform

SPECIFICATIONS - ELECTRICAL


MODEL NUMBER	0240-0000	0241-0000	0242-0000	0243-0000	0244- 0000	0245- 0000	0246- 0000	0246-00005	
WORKING RANGE, ± Inches (mm)	0.050	0.100	0.250	0.500	1.00	2.00	3.00	2 00 /76 2	
	(1.27)	(2.54)	(6.35)	(12.7)	(25.4)	(50.8)	(76.2)	3.00 (76.2)	
MAX. USABLE RANGE, ± Inches	0.075	0.150	0.375	0.750	1.50	2.75	3.25	4.00 (101)	
(mm)	(1.78)	(3.75)	(9.53)	(19.1)	(38.1)	(69.8)	(82.5)		
INPUT, VDC		9.0 Min. to 30 Max.							
	NO	MINAL F.S. O	UTPUT, ±VDC	with unloade	d output				
@ 6 VOLT INPUT	1.3	2.4	1.8	3.1	4.6	3.9	3.3	N/A	
@ 15 VOLT INPUT	3.4	6.4	4.8	8.3	12.1	10.2	8.7	10	
@ 24 VOLT INPUT	5.5	10.4	7.8	13.5	18.7	16.5	14.1	16.3	
@ 30 VOLT INPUT	7.0	13.0	9.7	17.0	24.8	20.7	17.7	30.5	
INPUT CURRENT		8.3 mA @ 6 Volt input to 52 mA @ 30 Volt input							
² NON-LINEARITY	±0.5	±0.5% Full Scale Over Total Working Range, ±1.0% Full Scale Over Maximum Usa							
INTERNAL CARRIER FREQUENCY, Hz	13000	12000	3600	3400	3200	1500	1400	1400	
% RIPPLE, RMS (nominal)	0.7	0.7	0.8	0.8	0.8	1	1	1	
OUTPUT IMPEDANCE, Ohms	2500	3500	5200	5500	5600	5500	5600	5600	
FREQ. RESPONSE (3 dB down), Hz	300	140	115	110	100	110	75	75	
TEMPERATURE RANGE		-65°F to +250°F (-54°C to +121°C)							
RESOLUTION				Inf	finite				



Images: Transtek

Dynamic range is the ratio of the largest to smallest input measured

Images: Science Direct, WikiPedia

Span is the output difference at the maximum and minimum values

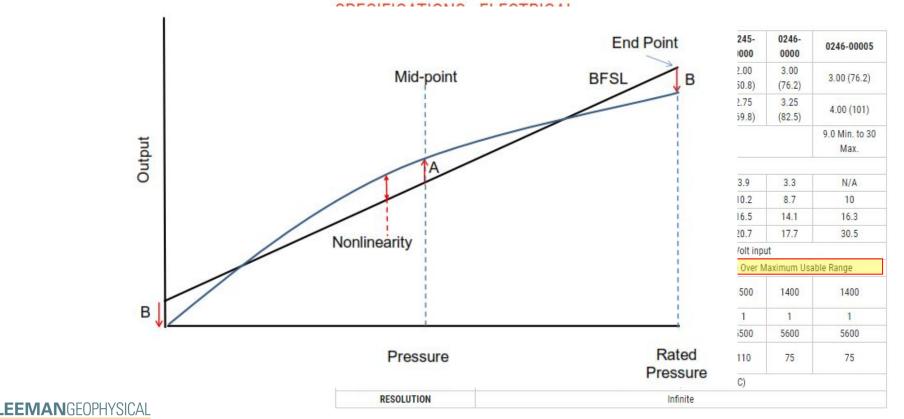
SPECIFICATIONS - ELECTRICAL

MODEL NUMBER	0240-0000	0241-0000	0242-0000	0243-0000	0244-	0245-	0246-	0246-00005	
WORKING RANGE, ± Inches (mm)	0.050 (1.27)	0.100 (2.54)	0.250 (6.35)	0.500 (12.7)	1.00 (25.4)	2.00 (50.8)	3.00 (76.2)	3.00 (76.2)	
MAX. USABLE RANGE, ± Inches (mm)	0.075 (1.78)	0.150 (3.75)	0.375 (9.53)	0.750 (19.1)	1.50 (38.1)	2.75 (69.8)	3.25 (82.5)	4.00 (101)	
INPUT, VDC	6.0 Min. to 30 Max.							9.0 Min. to 30 Max.	
	NO	MINAL F.S. O	UTPUT, ±VD(c with unloade	d output				
@ 6 VOLT INPUT	1.3	2.4	1.8	3.1	4.6	3.9	3.3	N/A	
@ 15 VOLT INPUT	3.4	6.4	4.8	8.3	12.1	10.2	8.7	10	
@ 24 VOLT INPUT	5.5	10.4	7.8	13.5	18.7	16.5	14.1	16.3	
@ 30 VOLT INPUT	7.0	13.0	9.7	17.0	24.8	20.7	17.7	30.5	
INPUT CURRENT		8.3 mA @ 6 Volt input to 52 mA @ 30 Volt input							
² NON-LINEARITY	±0.5	±0.5% Full Scale Over Total Working Range, ±1.0% Full Scale Over Maximum Usable Range							
INTERNAL CARRIER FREQUENCY, Hz	13000	12000	3600	3400	3200	1500	1400	1 <mark>4</mark> 00	
% RIPPLE, RMS (nominal)	0.7	0.7	0.8	0.8	0.8	1	1	1	
OUTPUT IMPEDANCE, Ohms	2500	3500	5200	5500	5600	5500	5600	5600	
FREQ. RESPONSE (3 dB down), Hz	300	140	115	110	100	110	75	75	
TEMPERATURE RANGE		-65°F to +250°F (-54°C to +121°C)							
RESOLUTION				Inf	finite				

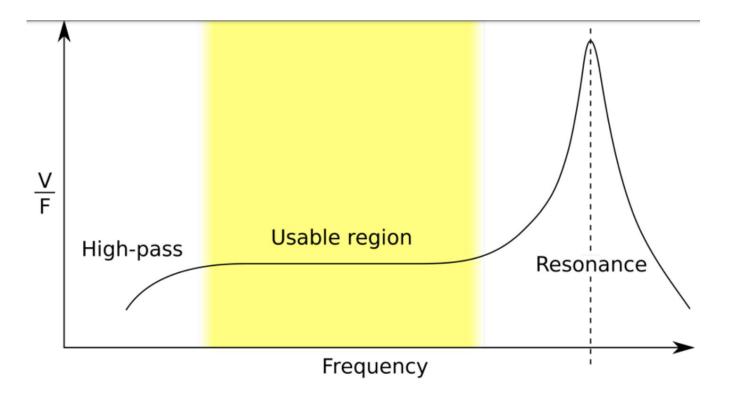
0244

0245

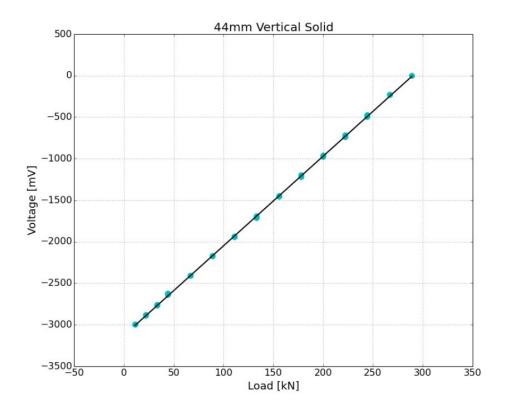
0246



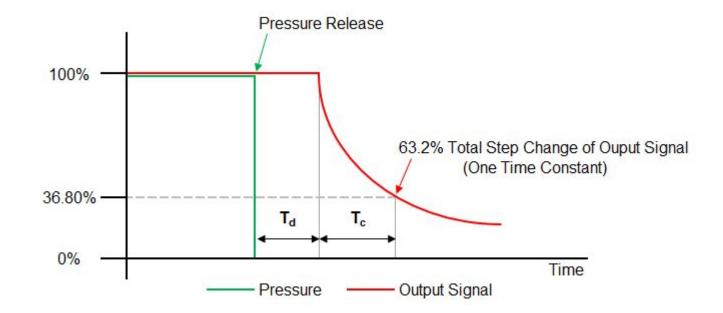
Images: Transtek


Linearity is deviation from an ideal linear output

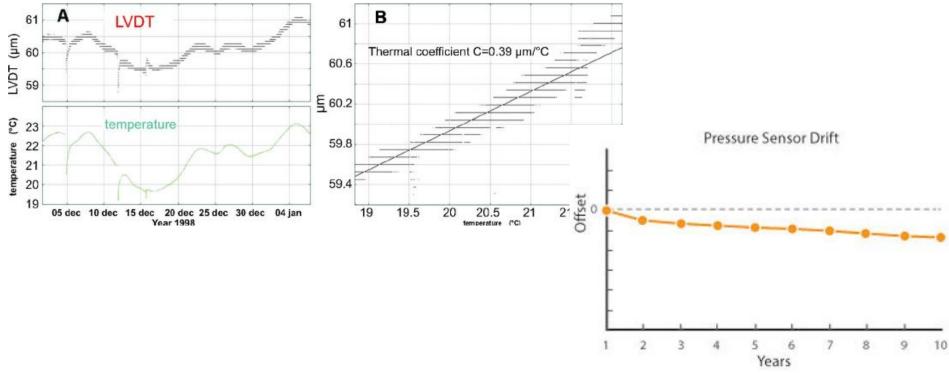
CONSULTING & INSTRUMENTATION


Images: All Sensors

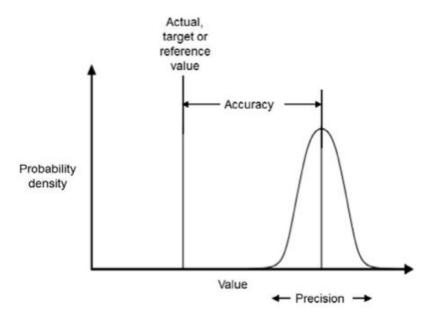
There is also a frequency component "dynamic linearity"



Sensitivity is the slope of the input-output curve (calibration slope)

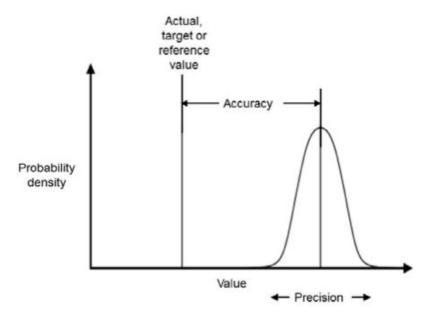

Response time must be much smaller than the timescale of the phenomena you want to measure (or it can be your low pass filter)!

Images: Yokogawa Instruments


Stability is how constant the output of a transducer is when the physical stimulus is static (drift, environmental, and more)

CONSULTING & INSTRUMENTATION

Images: ResearchGate, Solinst


Accuracy represents the maximum difference between the real and indicated values (commonly offsets, not always constant though)

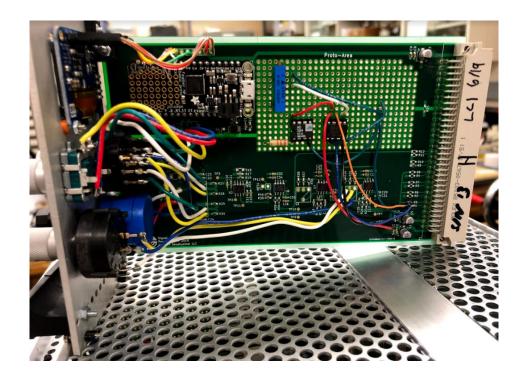
Images: Allsensors

Noise is how much variation there is relation to the real signal and is related to the precision of the instrument (often SNR)

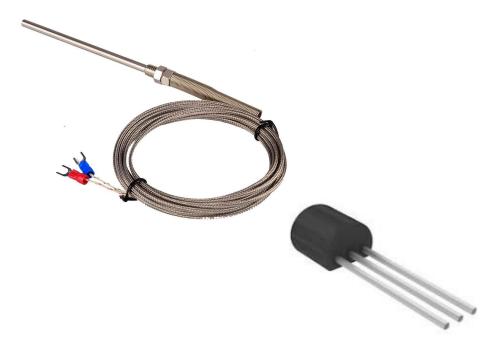
Images: Allsensors

The sensor must be matched to the environment in which it will operate - and overrated generally

Cost is always a factor - can you afford it, are you going to get it back, is it more than you really need?



Signal conditioning can add more cost than the instrument and create more environmental concerns



Technology used can present significant pros and cons based on your particular application

- What is the physical method
- What are the cross-sensitivities
- How stable is it
- How experimental is it

Transducer hysteresis is analogous to mechanical backlash and may or may not matter to you

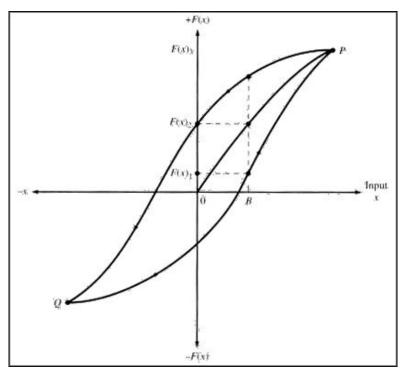
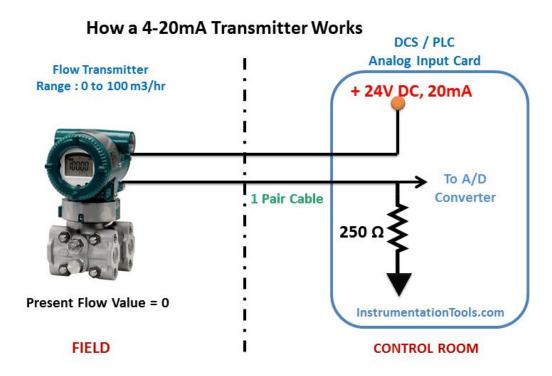



Image: National Instruments

Output should be matched to your system if possible

- Voltage
- Current
- Resistance
- Digital

We'll cover a few common measurement applications and how to approach them, many others are similar

- Temperature
- Position/Distance
- Pressure
- Strain
- Rotation
- MEMS

Temperature measurement has many potential technologies

EEMANGEOPHYSICAI

CONSULTING & INSTRUMENTATION

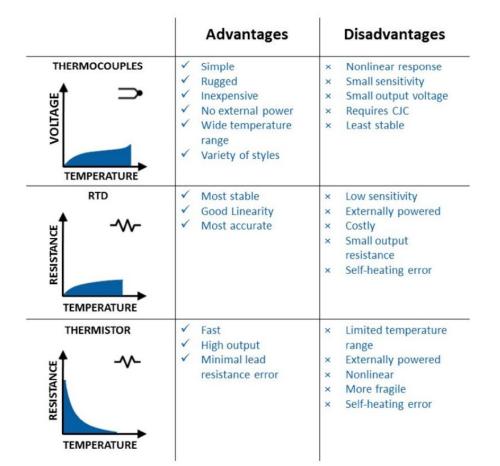
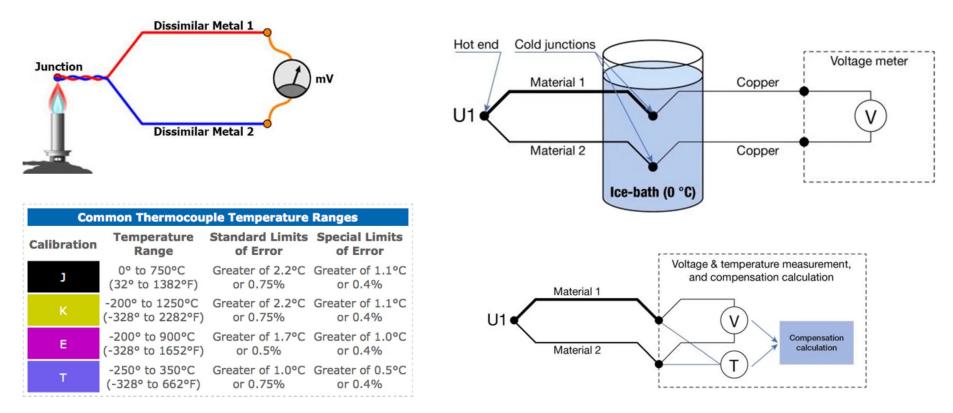
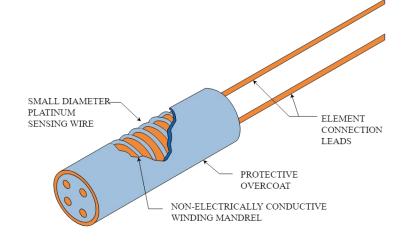
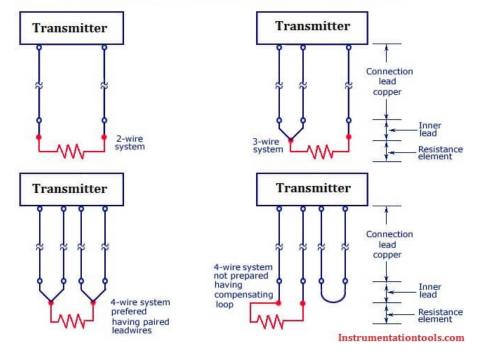



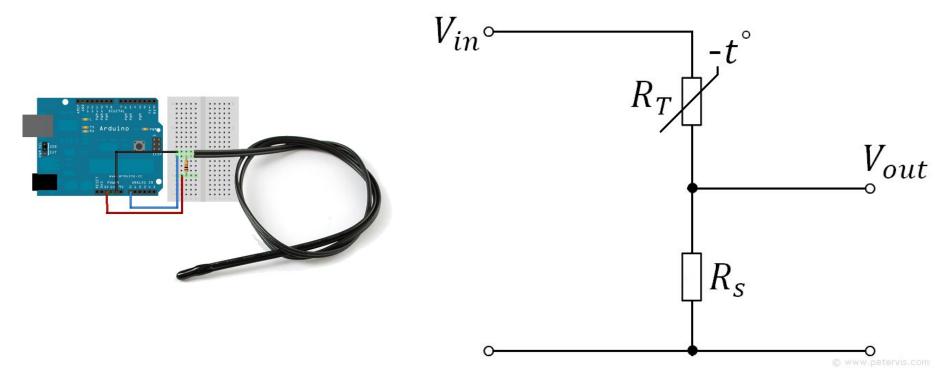
Image: National Instruments


Thermocouples use the Seebeck effect



Images: Sterling Sensors, Omega, Rockz Automation

RTDs are resistance based devices with high stability, but low sensitivity

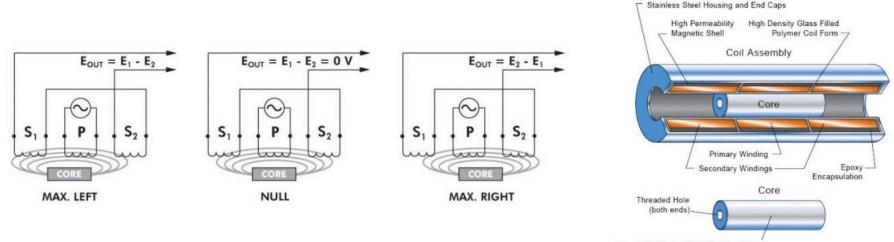

Resistance Temperature Detector (RTD) - 2-Wire, 3-Wire, 4-Wire Systems

Images: DEWESoft

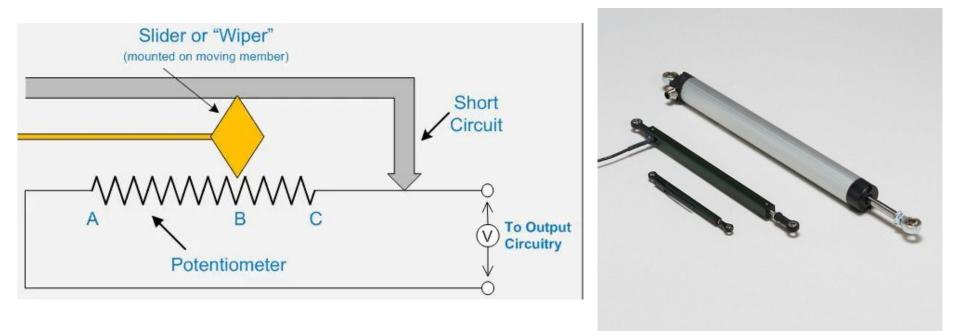
Thermistors are inexpensive silicon resistance based devices that are fast, but can experience self heating

Images: Adafruit, Peter Vis

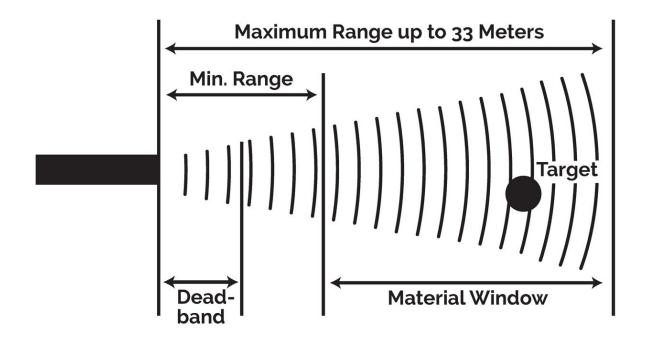
Position/Distance



- DCDTs/LVDTs
- Potentiometers
- Time of Flight
- Laser
- Inductive
- Capacitive


DCDTs and LVDTs are differential transformers, an expensive, but very good displacement sensors

High Permeability Nickel-Iron Core


Linear potentiometers can be slightly noisier and more thermally sensitive, but are inexpensive

Images: Control Products, TE

Time of flight sensors are a non-contact method than can be very economical

Laser distance sensors are very precise, but expensive

Image: Tuck Corp.

Inductive eddy current sensors are great for conductive non-contact measurements

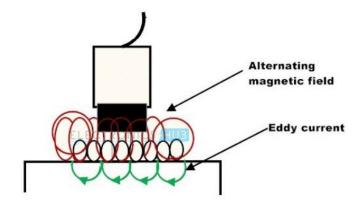
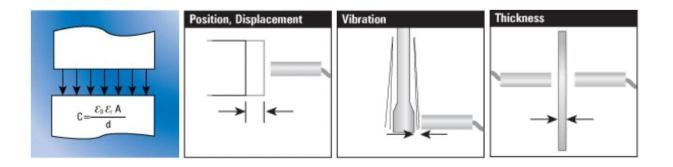



Image: Electronics Hub, Lion Precision

Capacitive sensors are very fast and high resolution sensors

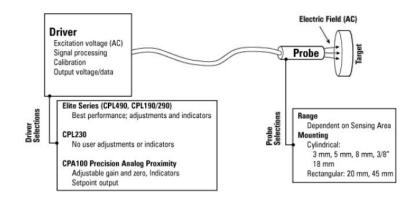


Image: Lion Precision

Pressure transducers are generally strain based, but come in multiple reference point variations

FFMANGEOPHYSICAL

CONSULTING & INSTRUMENTATION

- Absolute
- Gage
- Vacuum
- Differential
- Sealed

Strain is measured with strain gauges and forms the basis for many other sensing technologies

 $GF = \frac{\frac{\Delta R}{R}}{\epsilon}$

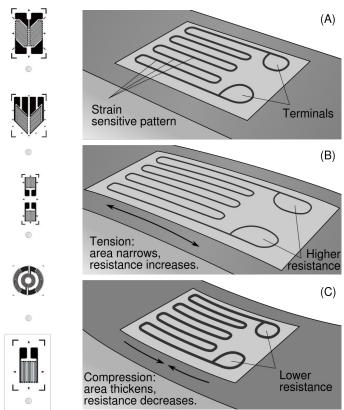


Image: dsfs

Strain gauges can be arranged in a variety of ways to measure different components of strain

We often use dummy gauges (not bonded or bonded in an unstrained direction) to compensate for temperature

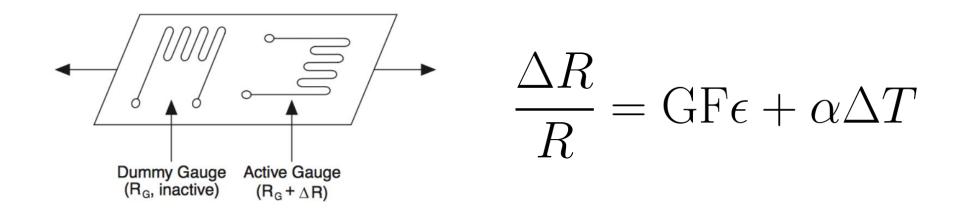


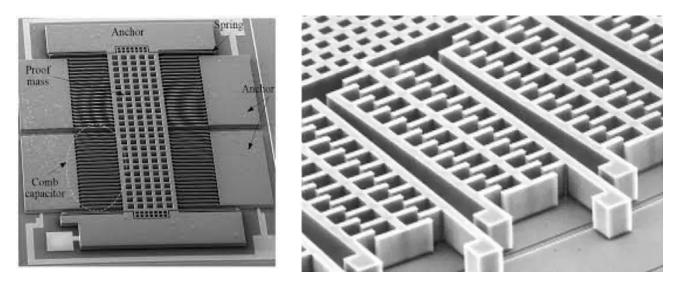
Image: National Instruments

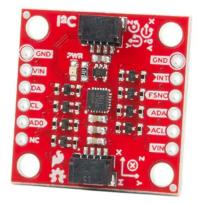
Great care should be taken with the bridge circuit design

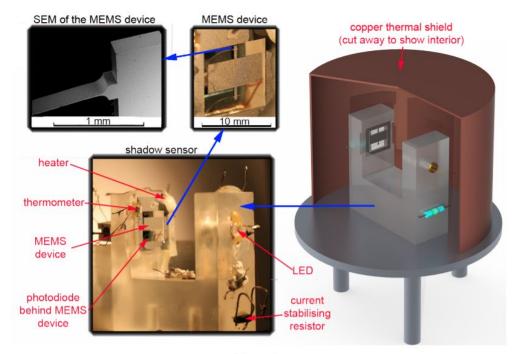
Measurement Type	Quarter Bridge		Half-B	ridge	Full-Bridge			
	Туре І	Type II	Туре І	Type II	Туре І	Type II	Type III	
Axial Strain	Yes	Yes	Yes	No	No	No	Yes	
Bending Strain	Yes	Yes	Yes	Yes	Yes	Yes	No	
Compensation								
Transverse Sensitivity	No	No	Yes	No	No	Yes	Yes	
Temperature	No	Yes	Yes	Yes	Yes	Yes	Yes	
Sensitivity								
Sensitivity at 1000 με	~0.5 mV/V	~0.5 mV/V	~0.65 mV/V	~1.0 mV/V	~2.0 mV/V	~1.3 mV/V	~1.3 mV/V	
Installation								
Number of Bonded Gages	1	1*	2	2	4	4	4	
Mounting Location	Single Side	Single Side	Single Side	Opposite Sides	Opposite Sides	Opposite Sides	Opposite Sides	
Number of Wires	2 or 3	3	3	3	4	4	4	
Bridge Completion Resistors	3	2	2	2	0	0	0	

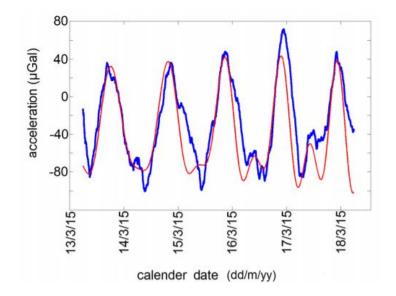
Image: National Instruments

Bonding, placement, wiring, resistance testing, and more are required and each with a lot of odd sensitivities


Image: Micromeasurements


Encoders are a great tool for rotary (or what can be translated to rotary) motion


MEMS has slowly been taking over many traditional applications, but the technology is certainly not fully mature



MEMS has slowly been taking over many traditional applications, but the technology is certainly not fully mature

Actuators come in many, many varieties and we're not going to focus on them more than to mention a few of the common ones

